HomeEnciclopedia Matematica

Altre proprietà del punto simmediano

Il punto simmediano di un triangolo. Parte seconda, con altre proprietà legate al primo e secondo cerchio di Lemoine.

In questo articolo, continuando con la disamina delle proprietà del punto simmediano [Vedi parte prima], l’autore si sofferma su altre due proprietà del simmediano di un triangolo. Queste proprietà riguardano alcuni punti particolari del triangolo medesimo. Punti situati su due cerchi, denominati cerchi di Lemoine.

Lo schema seguito è sempre lo stesso: dimostrazione nel caso del triangolo rettangolo e verifica nel caso particolare di un triangolo assegnato mediante le coordinate dei suoi vertici.

Alcune implicazioni delle due proprietà sono comunque dimostrate con considerazioni di Geometria elementare.

Proprietà del punto simmediano, parte II

 

Autore

  • Laureato in matematica presso l'Università di Messina. Ha insegnato matematica e fisica nei licei. Dal 1985 Dirigente superiore per i servizi ispettivi del MPI è stato responsabile della Struttura Tecnica Esami di Stato per il settore matematico e fisico. Ha tenuto corsi all'università e conferenze in numerosi convegni. È autore di saggi e libri di testo.

COMMENTS

WORDPRESS: 0
DISQUS: 0