Letteratura matematica. Un altro dei racconti di matematica di Nicola Melone: è dedicato al genio di Mozart e al suo valzer di 16 battute.
Dopo il fascino rivelato della Bella delle belle, Nicola Melone ci offre Lo scherzo di Mozart. Racconta di Wolfgang Amadeus Mozart che amava i giochi matematici e si divertiva con le permutazioni musicali. Seducente, per il mondo della didattica, l’interrogativo: «Può l’ascolto della sua musica favorire l’apprendimento della matematica»?
Lo scherzo di Mozart
Federico ha avuto a che fare con la Matematica per oltre cinquant’anni e con la Musica fin dalla nascita. Sua madre, infatti, nel 1933 aveva conseguito presso il Regio Conservatorio di Napoli il Diploma di Licenza e di Magistero, Ramo Pianoforte, e aveva insegnato Musica nelle scuole e dato lezioni private di pianoforte per tutta la vita. Nelle serate di festa in casa si suonava e si cantava e la musica era la seconda passione di Federico. Da anziano pensionato, quindi un po’ ripetitivo nei discorsi, appena trovava qualche vittima disposta ad ascoltare, raccontava «il legame tra Matematica e Musica risale alla scuola Pitagorica nel VI secolo a.C., che studiò a fondo i rapporti numerici delle altezze (o frequenze) dei suoni attraverso il monocordo, uno strumento costituito da una corda tesa su una cassa di risonanza tra due ponticelli, con un terzo ponticello intermedio mobile, che consentiva di dividere la corda in modo da ottenere suoni di altezza variabile».

Wolfgang Amadeus Mozart ( 1756 – 1791 )
La vittima preferita, anche perché molto paziente per l’affetto che li legava, era suo nipote Luigi, un bel quindicenne con molteplici interessi, tra i quali la musica. Il ragazzo viveva a Londra, quindi le occasioni non erano molto frequenti. Per questo, quando stavano insieme, il nonno ne approfittava per parlargli delle sue passioni. In uno dei loro incontri, Luigi chiese al nonno un parere sull’ipotesi che l’ascolto della musica di Mozart favorisse l’apprendimento della matematica. A Federico non parve vero di poter parlare in un colpo solo di entrambe le sue passioni e rispose «Wolfgang Amadeus Mozart, geniale compositore e straordinario clavicembalista austriaco della seconda metà del secolo XVIII, nella sua breve vita completamente dedicata alla musica trovò il tempo per coltivare interessi per la Matematica. Per la sorella Nannerl nel periodo scolastico “Wolfgang non parlava d’altro che di figure geometriche, non pensava ad altro”. Nella sua meravigliosa produzione musicale si possono riscontrare stretti legami tra note e aritmetica».
Il nipote lo interruppe dicendo: «nonno non cominciare a divagare, non volevo notizie su Mozart, chiedevo un tuo parere sull’influenza della sua musica sull’apprendimento della matematica». «Non ho un’idea precisa in merito», rispose Federico, «so soltanto che le moderne tecniche di neuroscienze, basate su tecniche di neuroimaging (PET, RMF) che producono immagini dirette dell’attività cerebrale, hanno confermato che la musica migliora le funzioni superiori logico-matematiche del cervello. In proposito nel 2011 è uscito un interessante articolo del Centro Interateneo per la Ricerca Didattica e la Formazione Avanzata dell’Università Ca’ Foscari a firma di Diana Olivieri».
Ma il nonno non voleva farsi scappare l’occasione e, senza attendere commenti del nipote, proseguì ‹Mozart amava i giochi matematici e sono stati ritrovati suoi appunti sulle permutazioni musicali.
Era di carattere burlesco e si racconta che abbia composto un valzer di 16 battute (note tra due stanghette verticali sul pentagramma), prevedendo una sola possibilità per una di esse, 11 diverse possibilità per altre 14 e 2 sole possibilità per la battuta rimanente. Egli sapeva certamente che il numero di variazioni possibili di quel valzer era talmente grande da rendere impossibile eseguirle tutte, ma amava sbalordire e mi piace pensare che sfidasse i musicisti che incontrava a cimentarsi».
Luigi, rassegnato, domandò: «Ma perché è impossibile eseguire tutti quei valzer? Non si possono contare uno ad uno in modo naif, cioè come farebbe un bimbo per contare i cioccolatini in una scatola oppure i chicchi di riso in una confezione?». «Non è possibile!» rispose Federico, «con un semplice ragionamento di combinatoria elementare si calcola immediatamente che il loro numero è 2•1114=759.499.667.166.482 (759 trilioni 499 miliardi 667 milioni 166 mila 482)». Visibilmente soddisfatto della meraviglia del ragazzo, proseguì «Per convincerti puoi ragionare al modo seguente. Supponiamo per comodità che la battuta unica sia la prima e quella con 2 possibilità sia l’ultima.
Un pianista suona la prima battuta e sceglie una tra le 11 possibilità per la seconda, quindi ha a disposizione 11 possibili coppie di battute. Scelta la seconda battuta, il pianista ha ancora altre 11 possibilità per la terza e quindi per le prime tre battute ci sono 11•11=112 possibilità. Per la quarta battuta ha ancora 11 scelte possibili e quindi per la quaterna di battute ci sono 11•11•11=113 possibilità. Così procedendo si ha che le possibili variazioni sono 2•1114, un “grande numero”». «Ma perché è umanamente impossibile eseguire tutte queste variazioni?» insistette Luigi e il nonno «è presto detto. Supponendo di suonare ogni battuta in 3 secondi e quindi l’intero valzer in 48 secondi, arrotondando ad 1 minuto volendo comprendere anche la pausa tra due esecuzioni consecutive, per eseguire tutte le variazioni occorrerebbero circa 1.445.014.587 anni (un miliardo 445 milioni 14 mila 587 anni)».
Accarezzò teneramente il nipote e sorridendo concluse «un tempo non alla portata di alcun essere umano. Purtroppo o per fortuna!».Nicola Melone, 6 maggio 2022
COMMENTS