HomeDidattica

Matematica: il dibattito sulle LCD

Alcune riflessioni sui contenuti dell’articolo di Emilio Ambrisi sulle “limitate catene deduttive”(LCD) alla luce delle considerazioni di Nicola Melone.

Ivi non entri chi non è geometra (Platone)

Leggendo ( e rileggendo) l’articolo ne ho apprezzato l’interessante approccio di tipo eclettico, ma anche la scelta sicuramente felice della questione proposta come esempio di applicazione del metodo dimostrativo:

«Si circoscriva  un cerchio ad un triangolo equilatero ABC e si dimostri che la somma delle distanze di un punto qualunque P, dell’arco BC, ai vertici B e C è uguale a PA»

Il quesito, non molto difficile e non banale, offre allo studente l’opportunità di impegnarsi quanto basta per ottenere poi la gratificazione del successo conseguito; suscita, successivamente, la  curiosità di  scoprire nuove proprietà della figura e spaziare in ambiti diversi  (geometria, algebra, trigonometria, storia del pensiero scientifico).

In particolare, dall’uguaglianza dimostrata si deduce una relazione tra lati e diagonali del quadrilatero ciclico ABPC, relazione che corrisponde a un caso particolare  del teorema di Tolomeo.

La questione sarebbe stata altrettanto stimolante se fosse stata proposta dopo una trattazione sistematica dei vari argomenti correlati, compreso lo stesso teorema di Tolomeo?  La risposta sarebbe stata molto più rapida ma suggerita da una semplice applicazione di un teorema noto, anche se lo studente ne avesse solo memorizzato l’enunciato.

Penso che, rovesciando i termini della questione, si dia maggiore  spazio alla “scoperta”.

Piuttosto che pensare ai prerequisiti, senza dubbio necessari, sinceramente io avevo immaginato successivi sviluppi degli argomenti, oltre l’excursus proposto nell’articolo. Costruzione  di quadrilateri ciclici di lati assegnati?  Discussione sul loro numero a meno di isometrie? Generalizzazione delle loro proprietà ai quadrilateri qualunque? Quadrilateri isoperimetrici e problemi di ottimizzazione?

Come ai tempi del PNI e del Progetto Brocca, il  metodo delle LCD dovrebbe essere visto come un approccio  laboratoriale da affiancare alle lezioni “tradizionali”, in pieno accordo, quindi,  con la conclusione del prof. Melone, giusta  risposta alle sue stesse, legittime, perplessità.

Senza eccedere  con il rigore, lo studente deve familiarizzare con il metodo ipotetico-deduttivo e pervenire successivamente alla costruzione di un sistema di assiomi per la geometria elementare.   Sotto la guida dell’insegnante impara a formulare in modo chiaro ed esplicito le ipotesi e le deduzioni, ad argomentare in modo esaustivo e nel linguaggio adeguato.

Metodo, linguaggio e scoperta erano le parole chiave per “fare matematica” nelle proposte di libri di testo innovativi degli anni ’70-’80 del secolo scorso: Lombardo Radice-Mancini Proia, Speranza-Rossi Dell’Acqua; Giovanni Prodi; Spotorno-Villani.

Del resto,  anche nelle Indicazioni nazionali della Riforma Gelmini del 2010 si  riconosce l’ invito  a una didattica di tipo attivo e stimolante: «Al termine del percorso didattico lo studente avrà approfondito i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, formalizzazioni), conoscerà le metodologie di base per la costruzione di un modello matematico di un insieme di fenomeni, saprà applicare quanto appreso per la soluzione di problemi, anche utilizzando strumenti informatici di rappresentazione geometrica e di calcolo»

Qualunque attività di laboratorio va sicuramente preparata e programmata (analisi dei prerequisiti, mappe concettuali, schede di lavoro, ecc. ecc.) ma  prevede anche momenti di incertezza, di revisione, di improvvisazione.

E’ ovvio che, mentre i ragazzi fanno congetture e  sperimentano metodi euristici, il docente e, plausibilmente, il libro di testo, hanno il loro punto di riferimento nella scelta di un sistema assiomatico.

I programmi Brocca suggerivano:

«A tal fine è bene programmare, in un quadro di riferimento organico, una scelta delle proprietà delle figure piane da dimostrare, utilizzando la geometria delle trasformazioni oppure seguendo un percorso più tradizionale».

Le Indicazioni nazionali del 2010 fanno un esplicito riferimento all’impostazione euclidea, anche se prevedono, come punto di arrivo,  un confronto con l’assiomatica moderna.

Del resto, le proposte di assiomatiche alternative, per lo più a base metrica, avanzate intorno alla metà del secolo scorso, non hanno avuto molto successo, anche se nella prassi didattica è ormai ben saldo il ricorso al metodo delle trasformazioni.

L’uso dei software di Geometria dinamica suggerisce, altresì,  un confronto con gli strumenti classici, riga e compasso. Gli strumenti di Geogebra, per esempio, fanno pensare piuttosto a “riga graduata, compasso e goniometro”. Più vicini quindi a Gustave Choquet e a George David Birkhoff che non ad Euclide!

Gli altri interventi:

Nodi e catene deduttive per insegnare geometria

La lettera di Nicola Melone

Didattica della matematica: il dibattito sulle LCD – Biagio Scognamiglio

Le LCD nell’insegnamento – Antonino Giambò

 

 

Autore

  • Adriana Lanza

    Laureata in matematica, all'Università “La Sapienza” di Roma. Vincitrice di concorso a cattedra per la classe matematica e fisica, ha  insegnato a Roma nel liceo scientifico “Cavour” e ha collaborato con la S.S.I.S del Lazio in qualità di insegnante accogliente per i tirocinanti. In pensione dal 2009, ha partecipato al progetto del MIUR “La prova scritta di Matematica degli esami di Stato nei Licei Scientifici: contenuti e valutazione”. Collabora alle attività di formazione della Mathesis.

    Visualizza tutti gli articoli

COMMENTS

WORDPRESS: 0
DISQUS: 0